Global Positioning System (GPS) Trenton Computer Festival 2004

Cass R. Lewart

Author

Database Consultant

12 Georjean Drive N 40* 23' 41.9" Holmdel, NJ 07733 W 74* 11' 29.7" Voice: (732) 264-9541 Fax: (630) 566-0349 E-Mail: rlewart@monmouth.com

GPS Haiku

- In ultimate cold through solar wind you orbit, to warmth you guide me
- Wife says pull over, no clear view of satellites, ask for directions
- Batteries are toast, map compass reading not learned, I await searchers

GPS Presentation

Basic GPS Design

- GPS (DoD) with 24 active satellites, Glonass (Russian Federation) with only nine active satellites, European Galileo (planning stage)
- GPS: Three segments Space, Control, and User Space Segment: 24 satellites + 4 spares in 12 hour, 20,100 km, 55° orbits, four satellites in each of the six orbital planes
 Control Segment: Ground stations adjust satellite clocks, provide orbital parameters (almanac, ephemeris) for each satellite
 User Segment: GPS receivers provide navigational and time information to users

GPS Presentation

Operating Modes

- Precise Positioning System (PPS) US and allied military, authorized government agencies - 22 m horizontal, 27.7 m vertical, 100 ns accuracy (95% of time). Resistant to jamming
- Standard Positioning System (SPS) civilian use -100 m horizontal, 156 m vertical, 340 ns accuracy with S/A, improved to PPS values after May 1 2000

GPS Presentation

Operating Modes (cont.)

- Differential Carrier Phase for surveying with postprocessing at least two receivers sub cm accuracy
- Differential GPS (DGPS) ground signal required 1 to 5 m horizontal accuracy
- Wide Area Augmentation System (WAAS) as of February 2002 implemented only in US with 25 ground stations and 2 geosynchronous satellites. Accuracy - 7 m vertical/horizontal

GPS Presentation

Determining Position on the Globe

- Almanac (status and clock information), ephemeris (orbital information) are broadcast to GPS receivers at same frequencies (1.2 and 1.5 GHz, 20 - 25 cm)
- . Different ID codes used by each satellite Timing information is based on satellite clocks
- Cesium/rubidium clocks 1 sec in 300 years
- Triangulation by adjusting receiver clock: 1 μ s = 300 meters, final precision +/- 100 ns

GPS Presentation

GPS Presentation

Simplified Example of Linear "Triangulation"

- Example: Distance between 2 satellites (from ephemeris information): 24,000 km or 80 ms (c = 300,000 km/sec)
- Time difference: GPS to Satellite #1 60 ms
- Time difference: GPS to Satellite #2 90 ms
- Conclusion: l clock in the GPS receiver is late by (90+60-80)/2=35 ms
- Corrected time to Satellite #1: 60-35 = 25 ms or 7,500 km
- Corrected time to Satellite #2: 90-35 = 55 ms or 16,500 km
- 4 satellites required for 3D triangulation

Sources of Error

- Code noise, receiver noise, satellite clock 1 m each
- Ephemeris data error, troposphere delay 1 m each
- Unmodeled ionosphere delay 10 m, multipath 1 m
- Satellite constellation geometry 10 m
- S/A (RIP) reduced horizontal accuracy from 22 to 100 m (95% of time). S/A was introduced in 1980 and discontinued at midnight on May 1, 2000 by order of president Bill Clinton
- Human and software errors can make GPS useless

GPS Presentation

GPS and Relativity Theory

- Special Relativity (SR): Clocks affected by satellite speed relative to earth frame of reference
- General Relativity (GR): Clocks affected by differences in gravitational field between satellites and receivers
- SR effects compensated by adjusting satellite clock divider ratios different ratio for rubidium/cesium clocks on satellites and on earth
- 48 Page paper describing effects of relativity: http://arxiv.org/PS_cache/gr-qc/pdf/0306/0306076.pdf

Derived Navigational Information

- Lat/Lon in degrees, UTM, other units
- Local time, UTC, elapsed time, ETA, ETE, altitude
- Speed, heading, bearing (true or magnetic) all in land or marine terms (SPD/SOG, HDG/COG, VMG, Landmarks/Waypoints, etc.)
- Distance to destination, distance traveled
- "Bread crumb" trail

Types and Cost of GPS Receivers

- Hand-held, "watch", car and boat mounted, PDA attachments (\$100 \$1,000)
- Built into cars with voice guidance, maps, street and address software with road lock, inertial navigation and DGPS (\$1,000 - \$3,000)
- For land surveys with Carrier Phase Comparison and Post processing (\$5,000 \$20,000)
- Military with PPS and S/A decryption (\$???)

Portable GPS Receivers (\$100 - \$1,000)

GPS Presentation Cass Lewart © 2004

Portable GPS Receivers

Etrex Summit, with electronic digital compass, barometer and altimeter, but poor sensitivity

GPS Presentation

Military Units

Plugger and 2 competing designs

GPS Presentation

Features in \$100 - \$1,000 Price Range

- Small manufacturers Garmin, Magellan, Lawrence
- Not much advertising little awareness, except for boat owners and hikers
- Storing of waypoints, routes and tracks
- 8 15 display screens with context sensitive menus
- Color display, back light
- Depending on price range user waypoints, city waypoints, fixed maps, maps on cartridges, maps downloadable from CDs, door-to-door voice directions

Additional Features in \$100 - \$1,000 Price Range

- Parallel input for up to 18 satellites vs. multiplexed input
- Selection of map datums, coordinate systems
- Simulation mode
- 100 1000 waypoints
- 10 50 routes with back tracking, MOB
- Sun/Moon rise and set, moon phase, dynamic display
- Wide range of scales on map display (0.1 1,000 mi)
- Proximity and other alarms

GPS Presentation

Satellite Status

• 5,300 mi horizon

Compass Rose

GPS Presentation

GoTo Large Screen

GPS Presentation

Alternate GoTo Screen

GPS Presentation

Graphical Position Display Without Map Capability

GPS Presentation

Graphical Position Display With Map Capability B/W and Color Map Displays

GPS Presentation

Graphical Position Display With Map Capability New York City (Central Park)

Tachometer/Odometer Screen

GPS Presentation

Time Screen

GPS Presentation

Flash Memory Usage

- Example Magellan SporTrak Pro 32 Mbytes reserved for base and detailed maps, waypoints, routes and tracks
- Installation of detailed maps only possible with proprietary protocols and specific (and expensive) manufacturer's software, though there are some "hacks"
- Basemaps are factory installed but there are ways for uploading and downloading them on some units
- Access to user data (waypoints, routes, tracks, current position) available with most commercial software

GPS Presentation

Hiking and Driving with a GPS

- Heading direction of travel, Bearing direction to a waypoint
- Using a compass, compass rose on GPS (>5 mi/h speed required for accurate heading indication), dynamic Sun/Moon display
- Making turns when Bearing and Heading differ by, e.g., 90 deg
- Marking trail head and trail crossings
- Horizontal accuracy 100 ft or better (after 05/01/00).

GPS Presentation

Transferring a Hike to a Topo Map

• Uploading tracks to a mapping program, e.g., to TOPO USA on the PC (Huber Woods, NJ)

GPS Presentation

GPS On A Commercial Flight

- Hold against window a great sensitivity test
- Know where you are, also speed, altitude
- Flight attendant: "Please put it away"
- Captain: "You can use it, provided you tell us if we are going off-course."
- Check if allowed by airline (subject to pilot discretion): http://gpsinformation.net/airgps/airgps.htm

GPS/PC/PDA Connection

- RS-232 serial port 1,200 115,200 bps, also USB
- NMEA and proprietary protocols
- Software for the moving map display, waypoint, track and route saving, locating streets, addresses
- Operating system upgrades distributed via Internet
- Commercial software (Street Atlas, Solus, Topo USA), shareware (Ozi Explorer) and free (MagWay, EasyGPS, TrackMaker)
- Topo, street maps on CDs and on cartridges

GPS on the Web

- General links http://gpsinformation.net
- DoD specs: http://www.navcen.uscg.gov/gps/geninfo/ 2001SPSPerformanceStandardFINAL.pdf
- Usenet sci.geo.satellite-nav
- Yahoo news groups for specific models
- US address search http://www.mapsonus.com http://www.geocode.com/eagle.html-ssi (don't forget to convert ddd.ddd to ddd.mm.ss or vice versa!)
- Manufacturer and vendor web pages

Power Sources

- 2 6 mostly AA batteries, 100 200 mA drain
- Primary Alkaline (2,000 mAh), Lithium (2,500 mAh)
- Rechargeable NiCad (450 800 mAh), NiMH (700 1,200 mAh). Manufacturer specs not reliable
- Factors for selection battery capacity, charging memory, temperature dependence, weight and price
- Cigarette lighter cable with voltage regulator (10-14V converted to specific GPS voltage)

Where Do We Go From Here

- New generation of satellites. Higher power Block 3 to replace current Block 2 satellites 18 out of 24 are past their design limits
- Use in civil aviation
- Expanded use by emergency services in conjunction with cellular networks (911, OnStar)
- Privacy concerns (1984)
- Expanded military use (cruise missiles, precision munitions, drones)

Brookdale Computer User Group (BCUG)

- Group of 300+ volunteers interested in computers
- BCUG is is an independent non-profit organization not associated with Brookdale Community College
- Monthly general meetings at Brookdale Community College campus in Lincroft, NJ, monthly newsletter
- 15 special interest groups meet monthly at various locations
- Dues are \$25/year, \$20 for non-working retirees
- For more information: www.bcug.com

GPS Presentation